149 research outputs found

    USP32 (ubiquitin specific peptidase 32)

    Get PDF
    Review on USP32 (ubiquitin specific peptidase 32), with data on DNA, on the protein encoded, and where the gene is implicated

    Switchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States

    Full text link
    We report transport measurements on a quantum dot in a partly suspended carbon nanotube. Electrostatic tuning allows us to modify and even switch 'on' and 'off' the coupling to the quantized stretching vibration across several charge states. The magnetic-field dependence indicates that only the two-electron spin-triplet excited state couples to the mechanical motion, indicating mechanical coupling to both the valley degree of freedom and the exchange interaction, in contrast to standard models

    Strong coupling between single-electron tunneling and nano-mechanical motion

    Full text link
    Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 10^5 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.Comment: Main text 12 pages, 4 Figures, Supplement 13 pages, 6 Figure

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    Capacitive Spring Softening in Single-Walled Carbon Nanotube Nanoelectromechanical Resonators

    Full text link
    We report the capacitive spring softening effect observed in single-walled carbon nanotube (SWNT) nanoelectromechanical (NEM) resonators. The nanotube resonators adopt dual-gate configuration with both bottom-gate and side-gate capable of tuning the resonance frequency through capacitive coupling. Interestingly, downward resonance frequency shifting is observed with increasing side-gate voltage, which can be attributed to the capacitive softening of spring constant. Furthermore, in-plane vibrational modes exhibit much stronger spring softening effect than out-of-plan modes. Our dual-gate design should enable the differentiation between these two types of vibrational modes, and open up new possibility for nonlinear operation of nanotube resonators.Comment: 12 pages/ 3 figure

    Real Time Electron Tunneling and Pulse Spectroscopy in Carbon Nanotube Quantum Dots

    Full text link
    We investigate a Quantum Dot (QD) in a Carbon Nanotube (CNT) in the regime where the QD is nearly isolated from the leads. An aluminum single electron transistor (SET) serves as a charge detector for the QD. We precisely measure and tune the tunnel rates into the QD in the range between 1 kHz and 1 Hz, using both pulse spectroscopy and real - time charge detection and measure the excitation spectrum of the isolated QD.Comment: 12 pages, 5 figure

    Nonlinear response of a driven vibrating nanobeam in the quantum regime

    Full text link
    We analytically investigate the nonlinear response of a damped doubly clamped nanomechanical beam under static longitudinal compression which is excited to transverse vibrations. Starting from a continuous elasticity model for the beam, we consider the dynamics of the beam close to the Euler buckling instability. There, the fundamental transverse mode dominates and a quantum mechanical time-dependent effective single particle Hamiltonian for its amplitude can be derived. In addition, we include the influence of a dissipative Ohmic or super-Ohmic environment. In the rotating frame, a Markovian master equation is derived which includes also the effect of the time-dependent driving in a non-trivial way. The quasienergies of the pure system show multiple avoided level crossings corresponding to multiphonon transitions in the resonator. Around the resonances, the master equation is solved analytically using Van Vleck perturbation theory. Their lineshapes are calculated resulting in simple expressions. We find the general solution for the multiple multiphonon resonances and, most interestingly, a bath-induced transition from a resonant to an antiresonant behavior of the nonlinear response.Comment: 25 pages, 5 figures, submitted to NJ

    Gate-defined graphene double quantum dot and excited state spectroscopy

    Full text link
    A double quantum dot is formed in a graphene nanoribbon device using three top gates. These gates independently change the number of electrons on each dot and tune the inter-dot coupling. Transport through excited states is observed in the weakly coupled double dot regime. We extract from the measurements all relevant capacitances of the double dot system, as well as the quantized level spacing

    Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes

    Get PDF
    The Kondo-effect is a many-body phenomenon arising due to conduction electrons scattering off a localized spin. Coherent spin-flip scattering off such a quantum impurity correlates the conduction electrons and at low temperature this leads to a zero-bias conductance anomaly. This has become a common signature in bias-spectroscopy of single-electron transistors, observed in GaAs quantum dots as well as in various single-molecule transistors. While the zero-bias Kondo effect is well established it remains uncertain to what extent Kondo correlations persist in non-equilibrium situations where inelastic processes induce decoherence. Here we report on a pronounced conductance peak observed at finite bias-voltage in a carbon nanotube quantum dot in the spin singlet ground state. We explain this finite-bias conductance anomaly by a nonequilibrium Kondo-effect involving excitations into a spin triplet state. Excellent agreement between calculated and measured nonlinear conductance is obtained, thus strongly supporting the correlated nature of this nonequilibrium resonance.Comment: 21 pages, 5 figure

    Nanoscale atomic waveguides with suspended carbon nanotubes

    Full text link
    We propose an experimentally viable setup for the realization of one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed by single doubly-clamped suspended carbon nanotubes. We show that all common decoherence and atom loss mechanisms are small guaranteeing a stable operation of the trap. Since the extremely large current densities in carbon nanotubes are spatially homogeneous, our proposed architecture allows to overcome the problem of fragmentation of the atom cloud. Adding a second nanowire allows to create a double-well potential with a moderate tunneling barrier which is desired for tunneling and interference experiments with the advantage of tunneling distances being in the nanometer regime.Comment: Replaced with the published version, 7 pages, 3 figure
    corecore